M1. (a) motor effect
(b) increase the strength of the magnet
or
increase the current
(c) $4.8 \times 10^{-4}=\mathrm{F} \times 8 \times 10^{-2}$
$\mathrm{F}=6 \times 10^{-3}(\mathrm{~N})$
$6 \times 10^{-3}=\mathrm{B} \times 1.5 \times 5 \times 10^{-2}$
$B=\frac{6 \times 10^{-3}}{7.5 \times 10^{-2}}$
$B=8 \times 10^{-2}$ or 0.08
allow 8×10^{-2} or 0.08 with no working shown for 5 marks a correct method with correct calculation using an incorrect value of F gains 3 marks

Tesla
accept T

M2. (a) the point at which the (total) mass seems to act / appears to be concentrated accept 'weight' for 'mass' accept the point at which gravity seems to act do not accept a definitive statement eg where (all) the mass is
(b) wider / larger base marks are for a correct comparison
lower centre of mass
accept lower centre of gravity / c of g
(c) line of action (of the weight) lies / falls inside the base in each case the underlined term must be used correctly to gain the mark
the resultant moment returns mixer to its original position
$\begin{aligned} & \text { accept there is no resultant moment / resultant moment is } \\ & \text { zero } \\ & \text { accept resulting moment for resultant moment } \\ & \text { do not accept converse argument }\end{aligned}$ 1

M3. (a) (i) will not fall over (1)
accept will not easily fall over (2)
orcentre of mass will remain above the base (1) (line of action of the) weight will remain above within the base
accept centre of gravity / c of g/c of m/cm
if the monitor is given a small push (1) depends on mark above
(ii) (total) clockwise moment = (total) anticlockwise moment or they are equal / balanced
(b) the position of the centre of mass has changed (1)the line of action of the weight is outside the base (1)producing a (resultant) moment (1)
points may be expressed in any order

M4. (a) 1.2

> allow 1 mark for conversion of 2.4 kN to 2400 N or for correct transformation without conversion ie $d=2880 \div 2.4$
metre(s)/m
(b) any two from:

- as the load increases the (total) clockwise moment increases
- danger is that the fork lift truck / the load will topple / tip forward
- (this will happen) when the total clockwise moment is equal to (or greater than) the anticlockwise moment
accept moments will not be balanced
- (load above 10.0 kN) moves line of action (from C of M) outside base (area)

M5. (a) $960(\mathrm{Nm})$
see-saw is in equilibrium
accept see-saw is balanced see-saw is stationary is insufficient
(total) clockwise moments = anticlockwise moment accept no resultant moment forces are balanced is insufficient an answer clockwise moments balance the anticlockwise moments gains 2 marks
(b) (i) $600(\mathrm{Nm})$
(ii) $375(\mathrm{~N})$ or their (b)(i) $\div 1.6$ correctly calculated do not credit if (b)(i) is larger than 960 allow 1 mark for correct substitution and transformation ie $\frac{600}{1.6}$ or their (b)(i)

M6. (a) (i) current produces a magnetic field (around XY) accept current (in $X Y$) is perpendicular to the (permanent) magnetic field
(creating) a force (acting) on XY / wire / upwards reference to Fleming's left hand rule is insufficient
(ii) motor (effect)
(iii) vibrate / move up and down

5 times a second
only scores if first mark point scores
allow for 1 mark only an answer 'changes direction 5 times a second'
(b) 0.005
allow 1 mark for calculating moment of the weight as 0.04
(Ncm)andallow 1 mark for correctly stating principle of momentsorallow 2 marks for correct substitution ie $F \times 8=2 \times 0.02$ or $F \times 8=0.04$

M7. (a) 38400

Nm or newton metres
do not credit ' $n m$ ', 'mN' or 'metre newtons'
(b) $16000(\mathrm{~N})$ or 16 kN
allow 1 mark for $38400 \div 2.4$
accept their (a) $\div 2.4$ correctly calculated for $\mathbf{2}$ marks accept their (a) $\div 2.4$ for 1 mark

M8. (a) (i) turning accept turning ringed in the box
(ii) point at which mass (or weight) may be thought to be concentrated accept the point from which the weight appears to act allow focused for concentrated do not accept most / some of the mass do not accept region / area for point
(b) $600(\mathrm{Nm})$
400×1.5 gains 1 mark provided no subsequent steps shown
(c) (i) plank rotates clockwise accept girl moves downwards do not accept rotates to the right
(total) CM > (total) ACM
accept moment is larger on the girl's side
weight of see-saw provides CM
answer must be in terms of moment
maximum of $\mathbf{2}$ marks if there is no reference to the weight of the see-saw
(ii) $\mathrm{W}=445(\mathrm{~N})$
$W \times 1.5=(270 \times 0.25)+(300 \times 2.0)$ gains 2 marks allow for 1 mark: total $C M=$ total $A C M$ either stated or implied
or
$(270 \times 0.25)+(300 \times 2.0)$
if no other marks given

M9.
(a) 60
allow 1 mark for correct substitution (with d in metres), ie $36=$ $F \times 0.6$
an answer of 0.6 or 6 gains 1 mark
(b) the line of action of the weight lies outside the base / bottom (of the bag) accept line of action of the weight acts through the side accept the weight (of the bag) acts outside the base / bottom(of the bag)
a resultant / overall / unbalanced moment acts (on the bag)
accept the bag is not in equilibrium do not accept the bag is unbalanced

